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ABSTRACT

Fog computing has been considered to be a potential solution to
enable computation-intensive and latency-critical application at the
battery-empowered mobile devices. Task offloading could take
advantages of available neighboring computational resources to
achieve low latency. By exploiting the temporal correlation of the
states at fog nodes, a sequential decision-making problem that aims
to optimize the long-term task offloading performance is consid-
ered in this paper. Such a problem is a partially observed Markov
decision process with an exploitation-exploration tradeoff that is
difficult to analyze. We address this tradeoff in task offloading under
the framework of restless multi-armed bandits (RMAB). The in-
dexability analysis of this task offloading problem is then provided.
Meanwhile, an index policy, which is asymptotically optimal and
has remarkably low computation complexity, is established based on
the Whittle’s index to solve the task offloading problem. Numerical
results show the superiority of the proposed task offloading method.

Index Terms— Fog computing, task offloading, restless multi-
armed bandits problem, RMAB, index policy.

1. INTRODUCTION

Widespread applications of the Internet of Things (IoT), 5G wireless
systems, and the embedded artificial intelligence in recent years re-
quire energy-efficient data processing capability at user equipments
(UEs) [1, 2]. For battery-empowered mobile devices, fog comput-
ing (or mobile edge computing) has been considered to be a poten-
tial solution to achieve low latency [2]. To exploit the benefits of all
the available computational resources, fog computing is employed to
distribute computing, storage, control, and communication services
along the cloud-to-thing continuum [1, 2].

Task offloading is one important problem in fog computing [2,
3,5,6,8–10]. Among the literatures, some researchers addressed the
energy issues and formulated task offloading as deterministic opti-
mization problems [2–4]. When the real-time states, e.g. the com-
putation queue length, of UEs and servers are considered, the task
offloading problem becomes a typical stochastic optimization prob-
lem. To tackle the problem that the future system information was
difficult to predict, the Lyapunov optimization method was invoked
in [5–9] to transform the challenging stochastic optimization prob-
lem to a sequential decision problem, which included a series of de-
terministic problems in each time slot and required only the current
system information. Assuming system parameters were unknown,
the tradeoff between learning the system parameters and pursuing
the empirically optimal offloading strategy was investigated under
the bandit model in [10].

These task offloading methods ignored the temporal correlation
of fog node states. In this paper, we assume the parameters of fog

nodes are not available at UEs but the states at fog nodes are tempo-
rally correlated. The state of a fog node indicates whether the com-
putational resources are sufficient or not. To characterize the tempo-
ral correlations of states at fog nodes, we employ a two-state Markov
chain, which is popular in studying time-correlated processes [11],
to model the evolution of the state at a fog node. If a task is of-
floaded to a fog node with sufficient computational resources, the
UE can obtain a high reward. At the beginning of each slot, the UE
needs to select some fog nodes for task offloading such that the long-
term reward over an infinite horizon is maximized. The task offload-
ing decision in each slot is associated with a fundamental conflict
between taking actions that yield high current rewards and taking
actions that sacrifice current gains with the prospect of reaping bet-
ter future returns [12], which is the classical exploitation-exploration
tradeoff and is difficult to analyze. To tackle this problem, we ana-
lyze the problem under the framework of restless multi-armed ban-
dits (RMAB) [13]. Specifically, the paper establishes an RMAB
framework of task offloading from a UE to multiple fog nodes in
fog-enabled networks. In order to solve the task offloading prob-
lem via an index policy, we further analyze the indexability of the
task offloading problem and obtained the closed-form Whittle’s in-
dex expressions in different cases. Numerical results show that our
proposed Whittle’s index policy for task offloading can achieve bet-
ter performance than other existing policies.

2. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a fog-enabled network where the M fog nodes can of-
fer computational resources and a UE can simultaneously offload K
tasks to K out of M fog nodes in each time slot. Note we have
assumed K orthogonal channels are available for a UE to offload
tasks. Consider that the UE does not know the accurate information
about the parameters of fog nodes, but can only obtain the knowl-
edge about fog node states which indicate whether the computational
resources at fog nodes are sufficient or not. For example, if the fog
nodes are equipped with energy harvesting devices [14], the energy
harvesting states can be treated as the fog node states, which can be
predicted by the UE. At the beginning of each slot, the UE selects
K out of N fog nodes to offload K tasks with knowledge of sates at
fog nodes.

The fog node states are assumed to be temporally correlated.
Specifically, the evolution of the state at a fog node is considered to
be a two-state Markov chain. Each chain has two states denoted by
states 1 (good) and 0 (bad), respectively. See Fig. 1. Let Xm(t) be
the state of fog node m in slot t. The probability transition matrix of
the two-state Markov chain in fog node m is given by

Pm =

[
pm 1− pm
qm 1− qm

]
, (1)

where pm := Pr{Xm(t + 1) = 1|Xm(t) = 1} and qm :=
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Fig. 1. A two-state Markov chain.

Pr{Xm(t + 1) = 1|Xm(t) = 0}. If the state of a fog node is 1,
the task is processed with sufficient computational resources, which
contributes to a low latency and a high reward. On the contrary, if
the state of a fog node is 0, the deficiency of computational resources
leads to a high latency and a low reward. Specifically, the immediate
reward is defined as

rm(Xm(t)) =

{
1, Xm(t) = 1,
δ, Xm(t) = 0,

(2)

where 0 ≤ δ < 1 indicates a low reward. Let bm(t) be a belief
value, which represents the probability that fog node m is in state
1 in slot t. Thus the expected immediate reward of fog node m is
given by

Rm(bm(t)) = [bm(t) + (1− bm(t))δ]. (3)

Let am(t) be the action in task offloading, i.e. am(t) = 1 (active
action) if fog node m is selected to offload a task and am(t) = 0
(passive action) otherwise. The belief states bm(t) evolve as

bm(t+ 1) =

 pm, if am(t) = 1, Xm(t) = 1,
qm, if am(t) = 1, Xm(t) = 0,

Qm(bm(t)), if am(t) = 0,
(4)

whereQm(bm(t)) := bm(t)pm+(1−bm(t))qm. Consider that the
evolution of the states of fog nodes has positive autocorrelation, i.e.
pm > qm. Thus, we have qm ≤ bm(t) ≤ pm.

At the beginning of each slot, the UE only maintains a belief
value of each fog node instead of the exact knowledge of the current
states. With knowledge of these belief values, the UE selects K out
of M fog nodes to offload K tasks. Before the end of each slot,
the selected fog nodes feed back the computation results and their
current states. Meanwhile, the belief values are updated according
to (4). We assume that the expected latencies due to data transmis-
sions, e.g. transmitting tasks and results between the UE and fog
nodes, are almost the same. In order to obtain computation results
with low latency, the UE aims to find an optimal policy for task of-
floading which maximizes the infinite-horizon expected discounted
sum of rewards. Specifically, we consider the following task offload-
ing optimization problem:

maximize
φ∈Φ

Eφb(0)

[
∞∑
t=0

M∑
m=1

βtRm(bm(t))am(t)

]
,

subject to
M∑
m=1

am(t) ≤ K,

(5)

where 0 ≤ β < 1 is the discounted factor, b(0) represents initial
state vector of M fog nodes, Φ is the set of admissible policies for
task offloading, and Eφb(0) denotes the expectation under a policy φ
conditional on the initial belief state vector being equal to b(0).

The task offloading problem in (5) is actually an RMAB problem
where each fog node can be regarded as an arm and the state of each

arm is the corresponding belief value of the fog node. To tackle the
exploitation-exploration tradeoff in such problems, we make use of
the well-established theory behind RMAB. In the next section, we
will first overview the RMAB problem briefly and then solve the
task offloading problem by exploiting the Whittle’s index policy.

3. RMAB PROBLEM AND INDEX APPROACH

The conventional deterministic Markov multi-armed bandits (MAB)
problems could be solved optimally by the Gittins index policy [15],
which could significantly reduce the complexity of finding the opti-
mal solution. As an extension of a conventional MAB problem, an
RMAB problem allows multiple arms to be activated simultaneously
and allows passive arms to change states [13]. In [16], the authors
proved that a general RMAB was PSPACE-hard and its optimal so-
lution was out of reach. To solve such an RMAB problem, by La-
grangian relaxation, Whittle heuristically proposed a priority index
policy in [13], which was known as the Whittle’s index policy and
it was asymptotically optimal under certain conditions [17]. How-
ever, the existence of this index is not always guaranteed. In fact,
to ensure the existence of a Whittle’s index policy, the RMAB prob-
lem should be indexable and the indexability of an RMAB problem
is unfortunately hard to establish [18]. Meanwhile, the computing
of the Whittle’s index can be complex and often relies on numeri-
cal approximations [18]. Addressing RMAB problems, in [12, 19],
the author has introduced and explored the concept of the marginal
productivity (MP) index, which is an extension of the Whittle’s in-
dex. With an economic interpretation, the MP index policies aim to
dynamically allocate resources to the arms that can make better uses
of them [20]. Note that the MP index gives a general method for
the calculation of the Whittle’s index. In the sequel, we will solve
the task offloading òptimization problem using the Lagrangian re-
laxation and the Whittle’s MP index approach.

3.1. Lagrangian Relaxation

The Lagrangian relaxation technique relaxes the deterministic con-
straint in (5) to the following statistical one:

E

[
∞∑
t=0

M∑
m=1

βtam(t)

]
≤ K

1− β . (6)

According to (5), the following Lagrangian can be formulated:

L(λ, {φm}Mm=1) = λ
K

1− β +

M∑
m=1

Lm(λ, φm), (7)

where φm denotes the task offloading policy for fog node m and

Lm(λ, φm) = Eφm
bm(0)

[
∞∑
t=0

βt {Rm(bm(t))am(t)− λam(t)}

]
.

As a result, we can approximate the constrained optimization prob-
lem in (5) by solving the following problem:

minimize
λ≥0

maximize
φ∈Φ

L(λ, {φm}Mm=1), (8)

where λ is the Lagrangian multiplier. Fixing λ, the relaxed opti-
mization problem (8) can be decomposed intoM separate single-UE
subproblems, i.e.

maximize
φm∈Φm

Eφm
bm(0)

[
∞∑
t=0

βt {Rm(bm(t))am(t)− λam(t)}

]
, (9)
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where Φm is the set of admissible task offloading policies for fog
nodem. Note that λ can be interpreted as the cost for task offloading.
As λ increases, the passive action should be more attractive. Let
Dm(λ) be the set of belief states of fog nodem in which it is optimal
to stay passive. Let Sk denote the state space of fog node k. Then we
can define the Whittle’s indexability using the following definition.
Definition: A fog node is indexable if and only if, the set Dm(λ)
monotonically expands from ∅ to Sk as λ increases from−∞ to∞.
The RMAB problem is indexable if and only if all the fog nodes are
indexable.

For each belief value, bm, of fog node m, the Whittle’s in-
dex, λ(bm), is defined as the infimum of the set of λ with which
bm ∈ Dk(λ). Specifically, the Whittle’s index is given by λ(bm) =
inf{λ|bm ∈ Dm(λ)}. If the RMAB problem is indexable, the Whit-
tle’s indices {λm(bm)}Mm can be used as priority indices for solving
(5). In [22], Niño-Mora established sufficient indexability condi-
tions for continuous-state restless bandits based on partial conserva-
tion laws (PCLs) and provided a general framework for the Whittle’s
index calculation based on the MP index theory. In the following, we
will address the indexability of the task offloading problem and cal-
culate the Whittle’s index by using the MP index theory.

3.2. Index Policy for Task Offloading

In this section, we focus on a generic single arm subproblem in (9),
and thus drop the superscript m from the above notations. In order
to simplify the index formulation, we let the immediate reward be
r′(X(t)) = [r(X(t)) − δ]/(1 − δ). Thus, the expected immedi-
ate reward is R(b(t)) = b(t). According to the MP index theory
in [23], to judge the task offloading performance, for a given initial
belief state b := b(0), we define the work measure of a fog node
as gφ(b) := Eφb [

∑∞
t=0 β

ta(t)], which gives the expected total dis-
counted number of the offloaded tasks. Correspondingly, we define
the reward measure as fφ(b) := Eφb [

∑∞
t=0 β

tR(b(t))a(t)], which
gives the expected discounted reward.

It has been shown in [11] that there exists a threshold policy
which is the optimal policy for the optimization problem in (9).
Specifically, there exists a threshold z ∈ (q, p), such that the opti-
mal action a(t) = 1 if the current belief value b > z and the optimal
action a(t) = 0, otherwise. We define z as a threshold level for
the threshold policy. Thus, if the belief state exceeds threshold level
z, the fog node will be offloaded a task. We denote the z-threshold
policy as φ(z). We can characterize the measures as follows:

gφ(z)(b) =

{
1 + βbgφ(z)(p) + β(1− b)gφ(z)(q), b ∈ (z, p],

βgφ(z)(q + (p− q)b), b ∈ [q, z),
(10)

and

fφ(z)(b) =

{
b+ βbfφ(z)(p) + β(1− b)fφ(z)(q), b ∈ (z, p],

βfφ(z)(q + (p− q)b), b ∈ [q, z).
(11)

For a given threshold z and action a, we let φ(1, z) denote the policy
that takes action a in the initial slot and adopts the z-threshold policy
thereafter. We further define the marginal work measure as

wφ(z)(b) := gφ(1,z)(b)− gφ(1,z)(b)

= 1 + βbgφ(z)(p) + β(1− b)gφ(z)(q)− βgφ(z)(q + (p− q)b),

and define the marginal reward measure as

rφ(z)(b) := fφ(1,z)(b)− fφ(1,z)(b)

= b+ βbfφ(z)(p) + β(1− b)fφ(z)(q)− βfφ(z)(q + (p− q)b).

If wφ(z)(b) 6= 0, the marginal productivity rate is given by

γφ(z)(b) := rφ(z)(b)/wφ(z)(b). (12)

According to the sufficient conditions for PCL-indexable in [22], the
fog node is PCL-indexable if wφ(z)(b) > 0 and the index:

λ∗(b) := γφ(b)(b), (13)

is monotonically nondecreasing in b. Furthermore, according to The-
orem 1 in [22], if a fog node is PCL-indexable, it is Whittle’s index-
able and λ∗(b) is its Whittle’s index, which is also called the Whit-
tle’s MP index.

In order to verify the conditions for PCL-indexable and compute
the Whittle’s MP index, in the sequel, we address the calculation of
the Whittle’s MP index. For example, in order to calculate marginal
work measure, i.e. wφ(z)(b), we need to evaluate gφ(z)(p), gφ(z)(q)

and gφ(z)(bp+ (1− b)q). Note that, for any z ∈ (q, p), we have

gφ(z)(p) = 1 + βpgφ(z)(p) + β(1− p)gφ(z)(q),

gφ(z)(q) = βgφ(z)(q′),
(14)

fφ(z)(p) = p+ βpfφ(z)(p) + β(1− p)fφ(z)(q),

fφ(z)(q) = βfφ(z)(q′),
(15)

where q′ := q + (p− q)q. According to (14) and (15), we obtain

gφ(z)(p) =
1

1− βp [1 + β2(1− p)gφ(z)(q′)],

fφ(z)(p) =
1

1− βp [p+ β2(1− p)fφ(z)(q′)].

(16)

According to (14), (15) and (16), we can further calculate the index
value of γφ(b)(b) in different cases via (12) and (13). By calculat-
ing the index value, it can be verified that the subproblem is PCL-
indexable, and λ∗(b) is the Whittle MP index. In summary, we can
establish the following proposition.

Proposition 1. For a belief value b ∈ [q, p], the Whittle’s MP in-
dex λ∗(b) for the task offloading optimization problem in (9) can be
obtained as follows.

For case 1, q ≤ b < q + q(p − q), the Whittle’s MP index is
given by

λ∗(b) =
b+ β(b− q)
1 + β(b− q) ; (17)

For case 2, q/(1− (p− q)) ≤ b ≤ p, the Whittle’s MP index is
given by

λ∗(b) =
b

1 + β(b− p) ; (18)

For case 3, q + q(p− q) ≤ b < q/(1− (p− q)), the Whittle’s
MP index is given by

λ∗(b) =

b+ βbfφ(b)(p) + β(1− b)fφ(b)(q)− βfφ(b)(q + (p− q)b)
1 + βbgφ(b)(p) + β(1− b)gφ(b)(q)− βgφ(b)(q + (p− q)b)

.

(19)

Proof. The calculation of the MP index value is similar to [23].
However, we consider that q ≤ b ≤ p. Specifically, we calcu-
late the MP index value in three different cases. For case 1, i.e.
q ≤ b < q+ q(p− q), and case 2, i.e. q/(1− (p− q)) ≤ b ≤ p, we
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can obtain the simplified index value easily and the details are omit-
ted here. For case 3, i.e. q+q(p−q) ≤ z < q/(1−(p−q)), we can-
not explicitly obtain gz(q′) and fz(q′). Let h0(b) = b and h1(b) =
q + (p − q)b. Considering the iteration hn(b) = hn(hn−1(b)),
for n ≥ 1, we have hn(b) = 1−(p−q)n

1−(p−q) q + (p − q)nb. Note that
limn→∞ hn(b) = q/(1− (p− q)). Meanwhile, we note that hn(b)
is increasing in n when b < q/(1 − (p − q)). Thus, for any b ≤ z,
there exists a n := nb,z such that hn−1(b) ≤ z and hn(b) > z.
Note that q′ = q + q(p− q) ≤ z, thus we have

gφ(z)(q′) = βn
∗
gφ(z)(hn∗(q

′)), fφ(z)(q′) = βn
∗
fφ(z)(hn∗(q

′)).

(20)

where n∗ = nq′,z , gφ(z)(hn∗(q
′)), fφ(z)(hn∗(q

′)) are given as

gφ(z)(hn∗(q
′))=1 + βhn∗(q

′)gφ(z)(p)+β(1−hn∗(q′))gφ(z)(q),

fφ(z)(hn∗(q
′)) = hn∗(q

′) + βhn∗(q
′)fφ(z)(p)

+ β(1− hn∗(q′))fφ(z)(q).

From (16) and (20), we can solve gφ(z)(q′) and fφ(z)(q′) and obtain
gφ(z)(p), gφ(z)(q), fφ(z)(p) and fφ(z)(q). For any b ∈ [q, z], the
marginal work measure is given by

wφ(z)(b) = 1+βbgφ(z)(p)+β(1−b)gφ(z)(q)−βn
∗
gφ(z)(hn∗(b)),

(21)
where hn∗(b) > z and n∗ = nb,z . For b ∈ (z, p], we have

wφ(z)(b) = 1 +βbgφ(z)(p) +β(1− b)gφ(z)(q)−βgφ(z)(b), (22)

where gφ(z)(b) is given by (10) with b > z. Note thatwφ(z)(b) > 0.
Similarly, for b ∈ [q, z], the marginal reward measure is given by

rφ(z)(b) = b+βbfφ(z)(p)+β(1−b)fφ(z)(q)−βn
∗
fφ(z)(hn∗(b)),

(23)
where hn∗(b) > z and n∗ = nb,z . For b ∈ (z, p], we have

rφ(z)(b) = b+βbfφ(z)(p) +β(1− b)fφ(z)(q)−βfφ(z)(b). (24)

The index value in (19) can be obtained from (21), (22), (23) and
(24). The derived closed-form index value expressions can be used
to verify the PCL indexability conditions directly. Thus, we can
claim that the index values are the Whittle’s MP index.

According to Proposition 1, we can calculate the values of the
Whittle’s MP indices {λ∗m(bm(t))}Mm=1 of all fog nodes in each slot
using the closed-form index expressions with remarkably low com-
plexity. The task offloading decisions are further made according to
the index values. In summery, we can establish the following task of-
floading strategy based on the Whittle’s MP index policy: At the be-
ginning of time slot t, with knowledge of belief values {bm(t)}Mm=1,
the K fog nodes with the highest Whittle’s MP indices λ∗m(bm(t))
are selected from the M fog nodes for task offloading.

Note that since the Whittle’s MP index value is monotoni-
cally increases with belief value bm(t), when the fog nodes have
the same Markov structure, i.e. the Markov probability transition
matrices are the same, and vary independently across fog nodes,
the Whittle’s index policy essentially becomes the myopic policy,
which aims to maximize the expected immediate reward. For my-
opic policy, the priority index value for fog node m is given by
λmyopic
m = Rm(bm(t)) in time slot t. The myopic policy is thus of-

floading tasks to the K fog nodes with the K largest myopic indices
λmyopic
m .
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Fig. 2. Performance comparison of different task offloading policies.
(“Whittle’s Index Policy”: the index policy proposed in Section 3.2;
“Myopic Policy”: the myopic policy that aims to maximize the ex-
pected immediate reward; “Round Robin Policy”: the round robin
policy that allocates tasks in a circular order.)

4. NUMERICAL RESULTS

In this section, we compare our proposed task offloading strategy
based on the Whittle’s MP index policy with the myopic policy and
the round robin policy by numerical results. We consider a fog com-
puting system with M = 10 fog nodes and a UE offloads K = 1
task in each time slot to a fog node. The states of fog nodes are
modeled as a two-state Markov chain. The low reward value is set to
δ = 0.5 and the time horizon is set to T = 103.

In Fig. 2, with different transition probabilities, we compare the
average rewards of different index policies by setting β = 0.999. We
let q1 = 0.5, p2 = 0.99, q2 = 0.01 and let pm = 0.8, qm = 0.2 for
m 6= 1, 2. The value of p1 varies in the interval [0.5, 1]. To highlight
the superiority of our method, we set q1 = 0.5, p2 = 0.99, q2 =
0.01 and let p1 varies in the interval [0.5, 1]. The transition prob-
abilities of the other UEs are set as pm = 0.8, qm = 0.2,m =
3, 4, · · · , 10. Note that node-2 has a large autocorrelation, while fog
node-1 has relative small autocorrelation. The results show that the
proposed task offloading strategy based on the Whittle’s index policy
outperforms the other two conventional index policies and the corre-
sponding performance gain increases as p1 approaches 0.5. We can
see the Whittle’s index policy can achieve better performance when
the differences between fog nodes are larger.

5. CONCLUSIONS

In this paper, we have addressed the task offloading problem in a fog-
enabled network and have proposed an RMAB framework to offload
multiple tasks from one UE to multiple neighbor fog nodes. In par-
ticular, by exploiting the temporal correlation of fog node states, we
have analyzed the indexability of the task offloading problem. Mean-
while, we have obtained the corresponding closed-form Whittle’s
index expressions. Furthermore, an index policy based on Whittle’s
index has been proposed to solve the optimal task offloading prob-
lem in a fog-enabled network. Numerical results demonstrate the
superiority of the Whittle’s index policy for task offloading problem.
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